🏆 FIDL 排行榜 🏆
统一排名模型在各领域的泛化能力
本排行榜遵循 ForensicHub 中提出的 IFF-Protocol 的简化版本:所有模型仅在 📂OpenMMSec 上训练。该数据集由 ForensicHub 与蚂蚁集团联合发布,设计理念与 IFF-Protocol 相似。OpenMMSec 包含真实图像、从公开数据集中采样的篡改图像,以及部分私有伪造图像。数据集组成的详细信息可在页面底部查看。
你可以通过以下方式下载 OpenMMSec:百度网盘或Google Drive
在排名评测中,我们从每个领域中选择了最具挑战性的数据集,不进行微调(finetuning),以强调模型的跨域泛化能力。每个领域的 AUC 会先进行平均,然后再取四个领域平均值的整体均值作为最终排序依据。
用于评测的数据集如下:
- Deepfake 检测:FF++, DF40
- 图像篡改检测与定位(IMDL): IMD2020, Autosplice
- AI 生成内容检测(AIGC): DiffusionForensics, Chameleon
- 文档篡改检测与定位(Document): RealTextManipulation, T-SROIE
| 🏆 Rank | Model | Deepfake 🖼️ | IMDL 📝 | AIGC 🤖 | Doc 📄 | Avg ⭐ |
|---|---|---|---|---|---|---|
| 🥇 1 | Effort | 0.614 | 0.587 | 0.410 | 0.788 | 0.600 |
| 🥈 2 | Segformer-b3 | 0.629 | 0.576 | 0.339 | 0.724 | 0.567 |
| 🥉 3 | Clip-ViT-L/14 | 0.664 | 0.543 | 0.317 | 0.724 | 0.562 |
| 4 | ConvNeXT | 0.662 | 0.573 | 0.337 | 0.669 | 0.560 |
| 5 | Mesorch | 0.541 | 0.562 | 0.460 | 0.591 | 0.538 |
| 6 | UnivFD | 0.442 | 0.486 | 0.463 | 0.734 | 0.531 |
| 7 | IML-ViT | 0.581 | 0.562 | 0.325 | 0.626 | 0.523 |
| ... |
更多超参数设置可参考 ForensicHub。
各模型在不同数据集上的详细性能如下:
点击展开查看结果
[
{
"model": "Effort",
"deepfake": {"DF40_CollabDiff": 0.7686, "DF40_deepfacelab": 0.4292, "DF40_heygen": 0.7061, "FF++c40": 0.5506},
"imdl": {"IMD2020": 0.5704, "Autosplice": 0.6035},
"aigc": {"Chameleon": 0.4898, "DiffusionForensics": 0.3304},
"doc": {"RealTextManipulation": 0.6439, "T-SROIE": 0.9326}
},
{
"model": "Segformer-b3",
"deepfake": {"DF40_CollabDiff": 0.8503, "DF40_deepfacelab": 0.5125, "DF40_heygen": 0.685, "FF++c40": 0.4677},
"imdl": {"IMD2020": 0.543, "Autosplice": 0.6098},
"aigc": {"Chameleon": 0.411, "DiffusionForensics": 0.2676},
"doc": {"RealTextManipulation": 0.5695, "T-SROIE": 0.8795}
},
{
"model": "ConvNeXT",
"deepfake": {"DF40_CollabDiff": 0.9572, "DF40_deepfacelab": 0.6103, "DF40_heygen": 0.5281, "FF++c40": 0.5512},
"imdl": {"IMD2020": 0.5512, "Autosplice": 0.5945},
"aigc": {"Chameleon": 0.3944, "DiffusionForensics": 0.2794},
"doc": {"RealTextManipulation": 0.5235, "T-SROIE": 0.8138}
},
{
"model": "UnivFD",
"deepfake": {"DF40_CollabDiff": 0.7458, "DF40_deepfacelab": 0.3962, "DF40_heygen": 0.1665, "FF++c40": 0.4610},
"imdl": {"IMD2020": 0.4887, "Autosplice": 0.4831},
"aigc": {"Chameleon": 0.5727, "DiffusionForensics": 0.3537},
"doc": {"RealTextManipulation": 0.5554, "T-SROIE": 0.9136}
},
{
"model": "IML-ViT",
"deepfake": {"DF40_CollabDiff": 0.9783, "DF40_deepfacelab": 0.2938, "DF40_heygen": 0.6297, "FF++c40": 0.4224},
"imdl": {"IMD2020": 0.5229, "Autosplice": 0.6008},
"aigc": {"Chameleon": 0.3707, "DiffusionForensics": 0.2799},
"doc": {"RealTextManipulation": 0.5307, "T-SROIE": 0.7207}
},
{
"model": "Mesorch",
"deepfake": {"DF40_CollabDiff": 0.7139, "DF40_deepfacelab": 0.3324, "DF40_heygen": 0.6478, "FF++c40": 0.4699},
"imdl": {"IMD2020": 0.5331, "Autosplice": 0.5905},
"aigc": {"Chameleon": 0.3991, "DiffusionForensics": 0.5214},
"doc": {"RealTextManipulation": 0.522, "T-SROIE": 0.6599}
},
{
"model": "Clip-ViT-L/14",
"deepfake": {"DF40_CollabDiff": 0.999, "DF40_deepfacelab": 0.352, "DF40_heygen": 0.8067, "FF++c40": 0.4984},
"imdl": {"IMD2020": 0.5567, "Autosplice": 0.5295},
"aigc": {"Chameleon": 0.3371, "DiffusionForensics": 0.2962},
"doc": {"RealTextManipulation": 0.5836, "T-SROIE": 0.8651}
},
]
OpenMMSec 数据集构成如下:
- 真实图像:COCO, Object365
- Deepfake:DeepFakeFace 与 SFHQ 两种伪造类型
- IMDL:基于 COCO 与 Object365 的小物体修补(inpainting)
- AIGC:Community Forensics
- Doc:OSTF及部分来自天池 2024 比赛的图像
